
The Enigma Protector

The Enigma Protector is a powerful tool designed for complex protection of program modules. Program modules
include the following types of objects:

l Win32 Portable Executable file (*.exe);
l Windows Screen saver files (*.scr);
l Dynamic Link Libraries (*.dll);
l 32 bit ActiveX control files (*.ocx);
l .NET executables (*.exe).

In this context the term "protection" means realization of two major ideas. The first one is "try before you buy"
concept support system (the mentioned concept is the main principle of the shareware marketing method). And the
second one is protection of program module machine code from analysis and cracking. As it can be seen, the
protection is realized in different, but nevertheless greatly interrelated aspects which are protection of the
developer's economic interests and technical protection of a software product. Later we will consider these ideas in
more detail.

The Enigma Protection and motivation for buying

"Try before you buy" conception support system

Almost every commercially distributed software product has a customer-key protection system. The software
developers have to build various enciphering algorithms into their programs. In many cases these algorithms have
low anti-cracking and anti-direct-enumeration protection rate. Suggested "try before you buy" concept support
system provides functionality which is necessary to work with registration keys. It gives easy ways of interaction
between the software developer and the user (customer). Functions of unique keys generation (within a certain
project scope) have a high protection rate. The Enigma Protector uses enciphering algorithms which are congruous
to RSA algorithm with the key of 512 bit length. This makes it impossible for a cracker to create spurious registration
keys. Functionality of the program module trial limitation is also provided. The user who works with the protected
program has an ability to try its operational capability within some period of time. At the end of this period, the
program module can no longer work normally. To restore this ability, it is necessary to perform the ordering
procedure (which usually requires payment).

Protection of program module machine code

During the distribution of their own program product, every shareware developer faces the problem of cracking.
Herewith serial numbers, spurious key generators and so on get a wide access. The effect of this "try before you
buy" concept is invalidated and the shareware marketing method loses its efficiency. For the developer this reveals
itself in reduction of amount of monthly sales and loss of profit. The suggested protection of machine code inckudes
creation of series of considerable hardships on the way of persons (crackers) who try to perform an unauthorized
code analysis and modifications for the purpose of illegal use. Machine code compression and enciphering are
supported. It is possible to make a considerable reduction of the program module size without the loss of its
working capacity.

To start working with The Enigma Protector read the following sections:

l Getting Started
l Tutorials

Managing of licenses

The Enigma Protector includes several unique tools for managing licenses:

l License manager serves for storing licenses generated for the registered users. License manager allows to
create customer records and generate licenses. It is a very useful, user-friendly and simple manager!

l Mailer serves for automatic generation and sending of emails to the users stored in the database. For any
software developer sending notification emails to the registered users is a common thing. For example, if
the newest version of the software has been released or a new registration scheme has been
implemented, the Mailer provides you with a very simple way of automatic email generation and sending.

What can The Enigma Protector do?

The Enigma Protector has a hard scheme of registration keys generation:

l comfortable interface for creating and verifying registration keys. You do not need to look for any safe
decisions on how to generate registration keys for customers. The Enigma Protector helps you to create
keys with a very safe algorithm like RSA with up to 512-bits key length!

l special Enigma API. Enigma API is a set of special functions to communicate between the module and the
Enigma loader. You are able to get full information about registration keys, current trial parameters, etc.

l hardware locking of registration keys. This perfect feature helps you to generate registration keys for a
particular computer only! The registration key generated with the hardware locking function enables work
only on one PC you have chosen.

l time limited registration keys. If you need to limit the time of usage of a registered version of the module,
you will be able to do it, just create a time-limited registration key!

The Enigma Protector has a wide range of features to limit time of module usage:

l executions, days, date, time limitations. The main idea of shareware modules is "try before you buy". The
customer should see how the application works and what features it has, let's show these features but do
not forget to limit usage time to increase motivation to buy application.

l system clock control. This feature is used to control system clock reversing. It helps you to avoid dishonest
customers.

The Enigma Protector has a lot of features to make your software resistant to cracking:

l anti-debugger tricks. Debuggers are the special tools that allow you to reverse source machine codes of
the executed module. All reverse engineers use these tools to understand how your module works or how
the module protection works. Using this feature helps to avoid simultaneous execution of the protected
module with debug tools.

l control sum checking. Control sum is special data which helps to understand if the data region is modified
or not. Every crack (removing of protection etc.) needs to modify some of machine code region. The Enigma
Protector is able to check if the sources are modified and an alert is made. The Enigma Protector checks not
only machine codes of the protected module, but also own sources!

l set startup password. Sometimes you need to limit count of users who are using protected module to a
particular group, startup password feature is the most safe decision.

l any additional features to check number of simultaneously executed copies of the protected module, file
name of the module, disk type where the module is executed.

l checkup of external files. If your application package contains any other files except the main protected
executable module you may use this feature to control these files against modifications.

l checkup of executed processes. This feature is used for checking if some files/processes are executed. It is
performed by checking of module file name, process windows text or class. This may help to avoid
execution of protected module if any debuggers/screencaptures/monitores are executed.

l checkup of installed services.
l checkup of Windows version.
l checkup of Virtual Machines. If the file is executed under Virtual Machine (VMWare, Virtual PC etc) the

execution is terminated.
l hard modifications of import table of the executable. Nobody will know what import libraries your module

uses.

The Enigma Protector has features to help the programmer to add beautiful things into existing module without
writing any additional sources strings:

l splash screen. Add splash screen to the module startup. Choose your own picture to be shown when the
module starts.

Order

To order a license for The Enigma Protector, please visit www.enigmaprotector.com. Prices for different types of
licenses are given in the following table.

This license provides you with free updates within 9 months.

Money transfer services

Purchase of The Enigma Protector can be performed through the following money transfer services: ShareIt!
(www.shareit.com), Western Union (www.westernunion.com), WebMoney (www.wmtransfer.com). For purchasing
with the Western Union and WebMoney, please, contact to our support team for more information
support@enigmaprotector.com.

About ShareIt!

The ShareIt! supports the following types of purchases (this information was taken from ShareIt! official site):

Credit Card

l We accept Visa, MasterCard, American Express, Diners Club, and JCB.
l When you pay by credit card, your order will be processed immediately. Postal mail shipments are initiated

immediately. Products available electronically are generally ready for download immediately, or no more
than 48 hours after you place your order.

Solo/Switch/Maestro (only if issued in UK)

l We accept debit cards from Switch/Maestro and Solo (UK).
l When you pay by debit card, your order will be processed immediately. Postal mail shipments are initiated

immediately. Products available electronically are generally ready for download immediately, or no more
than 48 hours after you place your order.

Bank/Wire Transfer

l To help minimize fees for wire transfers to foreign countries, you may send bank transfers to one of our
accounts in Germany, France, Great Britain, Finland or Japan.

l You will receive the account information via e-mail after your order is processed.
l You will receive your product once the payment is received.

PayPal

l PayPal payments for orders are currently accepted only in USD, EUR, CAD, GBP and JPY.
l A valid PayPal account is not required to use this payment method; you can set up an account when you

are directed to PayPal's Web site.
l If you choose PayPal as your payment option, you will be automatically redirected to PayPal's Web site. You

can then log in to PayPal as usual or set up the PayPal account to pay for your order.
l During the payment process, all information will be exchanged in encrypted format exclusively between you

as the account holder and PayPal's Web site.
l After the transaction is successfully completed, you will be returned to share-it!'s order process pages.
l Typically, product delivery will be initiated immediately.

Check

l We accept all personal, business, and Cashier's checks. Please note that personal checks may be held for
up to 10 business days.

l Please note that postal money orders must be in US dollar currency and drawn on US Bank. Please send
those postal money orders to our US-Office:

ShareIt! Inc.
9625 West 76th Street, Suite 150
Eden Prairie, MN 55344

Name of product Price of Single Developer License Price of Company license

The Enigma Protector Professional 149 USD 299 USD

USA

l You will receive detailed information by e-mail after your order is processed.
l Products will be shipped once payment is received.

Cash

l You can also send us cash by mail. You will receive notification of our postal address by e-mail after your
order is submitted.

l Your order will be shipped as soon as the payment is received.

Support

If you have any technical problems with The Enigma Protector or need a special feature to be included in the next
release, please feel free to contact us at support@enigmaprotector.com.

In case of technical problems with The Enigma Protector, make sure that you are using the latest version available.
You can download the latest version of The Enigma Protector from www.enigmaprotector.com.

Please, try to find the requested information in the FAQ section or at our support forum!

Program Overview

This section unites description of the main features of The Enigma Protector categorized into the following
subsections :

l Project details
l Input
l Advance Input
l Output
l Registration Features
l Check-Up
l Protection Features
l Virtual Box
l Virtual Machine
l Miscellaneous
l Trial Control

Project details

Enter the name and description of the project. These fields are used only to provide some information to let you
know what this project is about. You are able to change/modify these data at any time without losing module
workability.

Input

This topic includes the most important fields which should be specified.

l Enter file name of the program module to be protected - the file name which needs to be protected.
l Icon of the program module - the icon of the module you have selected.
l Enter product name - the module product name. Warning: this information is used for generation of some

protection parameters, don't change this field for the same module.
l Enter version info - module version information. It is used to work with Trial Control functions. Do change

product version field for every module version.
l Get Actual - reads the module product name and version from resources.
l File information - special file information, contains the type and size of the file, main values from the header

of 32-bits PE Windows executable.

Advance Input

Allows you to select additional files that will also be protected with the current project. Click "Add File(s)" button

and select the necessary additional files. To delete a file from the list, click button. To select another output file
name, activate the necessary row and click on the "Output File" column.

Protect additional files after the main executable - if selected, then the main executable (the input file selected in Input
panel) will be protected before the additional one selected in the list. Otherwise, the additional files will be
protected first and the main executable will be at the end of protection.

Output

Enter the file name of the resulting protected file. If you chose the same input and output file names, the original
file will be copied in the same folder with the .bak extension.

Same as input file name - turn this check on to set output file name the same with the original one. The original file
name is defined in the Input panel.

Do not create backup (.bak) files - if this option is enabled, no backup file will be created if input and output files are
the same. This option also affects the files from Advance Input panel.

Registration Features

The features described in this section include setting project parameters that are related to storing and using
registration keys. To create registration keys, see Keys Generator. The examples of working with registration keys
can be viewed in Enigma API Description.

Follow the links below to get more details.

l Common
l Key Properties
l Registration Data Storing
l Hardware Lock
l Encrypt with Hardware ID
l Registration Dialog
l Key Expiration Reminder

Common

These features are related to different options for registration keys usage.

UNICODE Registration Scheme - enables UNICODE support for the registration system. It means that:

l Keys Generator works with unicode support;
l Keys Generator of License Manager works with unicode support;
l Enigma API with unicode support (functions with the W prefix) should be used for custom checking/saving

and loading of registration information;
l CGI Keys Generators should be called with unicode support (functions with the W prefix);
l custom keys generators that use keygen.dll have to call unicode support functions (functions with the W

prefix).

Please note:

l if you change this feature in the existing project, all previously generated registration keys will become
invalid;

l ANSI functions of checking/saving and loading registration information will fail.

Allow execution only if registered - allow execution of the protected module only if it is registered.

Encrypt application with Encryption Constant - it encrypts the application with the Encryption Constant. The
Encryption Constant is a unique value that is stored in the registration key. It means that if the application is
protected with this option, it is impossible to run/unpack the application without valid registration keys. This feature
has one common restriction: the application should be unlocked with registration keys generated with at least one
crypted section enabled. If the registration key does not have any sections unlocked, the application will fail to be
executed. If you try to run the application protected with this option and registered with the key that does not have
any crypted section enabled, the execution will depend on the options selected on Checkup-Control Sum panel.

That is, if the control sum is enabled, a message will be shown or the execution will be terminated silently.

Registration keys mode safety/length

Select the mode of registration keys. Available modes: ~ RSA 512/768/1024/2048/3072/4096. Keys with a high
count of bits are longer than the ones with a low count, but they are much stronger. Usually, a 512-bit protection is
enough.

NOTE: if you change this option, all previously generated keys will be invalid.

Registration keys base

Select the output base of registration keys.

NOTE: if you change this option, all previously generated keys will be invalid.

See Creating Keys for more information.

Key Properties

The features from this page allow you to limit the usage of different types of registration keys. For example, if you
have enabled the "Allow only hardware locked keys" option, the application will apply only the registration keys
that have been generated with the hardware I., If the registration key was generated without a hardware ID, it will
be deemed invalid by the application even if it is valid.

Such features are also important for avoiding illegal usage of the registration keys (that were probably stolen or
illegaly generated) if you are planning to constantly use any of these limitations for all the registration keys.

Allow only hardware locked keys - allows only hardware locked registration keys.

Allow only time limited keys - allows only registration keys with the Expiration Key Date.

Allow only keys with Register After date - allows only registration keys with the Register After date

Allow only keys with Register Before date - allows only registration keys with the Register Before date

Allow only executions limited keys - allows only registration keys that are limited by the number of executions

Allow only days limited keys - allows only registration keys that are limited by the number of days

Allow only run-time limited keys - allows only registration keys that have a run-time limit

Allow only global time limited keys - allows only registration keys that have a Global Time limit

Allow only country locked keys - allows only registration keys that are limited to a particular country

Registration Data Storage

This section describes possibilities to select the location where registration information will be stored on the user's
computer. Registration information refers to the couple of strings - the registration name and registration key.
Registration information is stored in the user's system without being encrypted. This means that it can be
accessible for viewing. If you do not use the features of The Enigma Protector for the license creation (for
registration keys generation), the data entered in those fields will be ignored by The Enigma Protector.

The Enigma Protector supports two types of the registration data storage - the Windows registry and an external
file. You can use each type separately or both techniques simultaneously.

Encrypt Registration Information - allows you to encrypt registration information. If the option is disabled,
registration information (the name and key) will be stored in a registry/file as they are.
For example, the file with the registration information, without the Encrypt Registration Information feature, will look
in the following way:

with the Encrypt Registration Information feature

Disable copy of the registration information to another PC (the registration information will be encrypted with the user's
Hardware ID) - this option allows you to encrypt registration information with the user's hardware ID as well. If the
registration information is encrypted with the hardware ID, the registry item or file with registration information will
work and will be valid only on the PC where it was created. If the user attempts to copy this registry item or file to
another PC, registration will fail on this PC.
Please note:

l This feature is incompatible with the "Allow Hardware Changes" from Hardware Lock panel. This means
that if the hardware ID is changed on the user's PC, and even if the Allow Hardware Changes option is
enabled, the registry item or file with registration information will become invalid and the application will
require registration again;

l Do not use this feature to lock registration information to a particular PC. To lock the license to a particular
PC, use the Hardware Lock panel and generate the registration keys with user's hardware ID.

Storing data in the Windows registry

Use system registry - check this radio button to store registration data in the Windows registry. Attention: after the
reinstallation of the operating system, the user will have to enter registration information once again.

Base place in registry - select the base branch of the registry which will hold the registration data. Possible values
are:

l HKEY_CURRENT_USER
l HKEY_LOCAL_MACHINE

Relative path in registry - indicates the location where registration data will be stored. Use the following structure to
fill out the field:\SOFTWARE\YourCompany\. The registration name will be stored at this address as the value of the
"Name" parameter and the registration key will be stored at the same address as the value of "Key" parameter.

For example if you point out the base location in the registry as HKEY_CURRENT_USER аnd the relative path in the
registry as \SOFTWARE\YourCompany\ , the registration information will be stored at the following paths:
Registration name - HKEY_CURRENT_USER\SOFTWARE\YourCompany\Name
Registration key - HKEY_CURRENT_USER\SOFTWARE\YourCompany\Key

Storing data in an external file

Use file system - check this radio button to store registration data in an external file .

Base folder in file system - select the base path where file with registration data will be placed:

l %DEFAULT FOLDER% - the folder where the protected module is placed (the same value if kept empty);
l %SYSTEM FOLDER% - System32 (WinNt) or System (Win9X) subfolder of the Windows installation folder;
l %WINDOWS FOLDER% - the Windows installation folder;
l %My Documents FOLDER% - My Documents folder. Attention: For operating systems of the Windows NT

family there is an individual "My Documents" folder for each user. Registration may not affect all users;
l %My Pictures FOLDER% - My Pictures folder. It has the same warning as for My Documents folder;
l %Program Files FOLDER% - Program Files folder;
l %Program Files\Common FOLDER% - Program Files\Common folder;
l %AllUsers\Documents FOLDER% - All Users\Documents folder;
l %History FOLDER% - History folder. It has the same warning as for My Documents folder;
l %Cookies FOLDER% - Cookies folder. It has the same warning as for My Documents folder;

l %InternetCache FOLDER% - InternetCache folder. It has the same warning as for My Documents folder;
l %ApplicationData FOLDER% - ApplicationData folder. It has the same warning as for My Documents folder.

Relative path in file system - a relative path where the file with registration data will be placed. If that path does not
exist, the Enigma Loader will create the entire folder structure automatically when saving the key. Use the following
structure to fill out the field:\notepad\secret.dat, where notepad is an additional folder relative base path,
secret.dat - the name of the file where registration data will be stored, dat - the extension of the file. The format of
that file is just an .ini file format.

Set File Attributes - allows you to set additional attributes to the license file. If this option is not selected, normal
attributes will be applied to the license file.

Use of both techniques

Use both techniques - check this radio button to store registration data in the Windows registry and an external file
simultaneously.

Hardware Lock

This section provides possibilities for selecting the type of locking the registration key to system hardware or user
data. The Enigma Protector has a set of features that provide possibilities to create registration keys locked to a
specific computer. These keys will work on just one computer. You can find detailed information on using hardware-
locked registration keys in the description of the EP_RegHardwareID function of the Enigma API description section.
See also the Keys Generator section.

Types of locking:

l Volume Serial Drive - the serial number of the system partition of the hard drive;
l System Volume Name - the name of the system partition of the hard drive;
l Computer Name - the computer name (name of the currently active system user);
l CPU type - the type of CPU;
l Motherboard - information from the motherboard BIOS;
l Windows Serial Key - the serial key of the installed Windows;
l Windows User Name - the name of the currently active Windows user account.

(*1) The condition is effective if operating systems are installed on the same partition of the hard disk drive and the
system partition is not changed or formatted.

(*2) The condition is effective if the user enters the same partition name as it was before formatting.

(*3) Formatting or changing a system partition means reinstallation of the operating system. This condition can be
accomplished if the user enters the same computer/user name that was in the previous operating system.

(*4) This change can be made only with the help of special software.

(*5) Administrator or Group privileges are needed on Windows NT (Windows 2000, Windows XP, Windows Vista).

(*6) Hard Disk Serial hardware lock failed to get the serial number if the operation system is installed on a RAID

Locking type
Is the same in

different operating
systems

Is the same after the hard
disk drive is formatted or

modified

Can be modified
by the user

Can be the same on
different computers

Volume Serial
Drive yes(*1) no yes (*4) seldom

System Volume
Name yes(*1) defined by user (*2) yes seldom

Computer Name defined by user defined by user (*3) yes seldom

CPU type (*5) yes yes no very often

Motherboard BIOS
(*5) yes yes no seldom

Windows Serial Key
(*7) no yes no seldom

Hard Disk Serial
Number (*6) yes the same only after formatting no no

Windows User
Name defined by user defined by user (*3) yes seldom

hard disk drive. Usually, the number of RAID disks is no more than 2-5% of all users.

(*7) Windows Serial Key hardware lock may return the same values on the corporate/company version of Windows.
If your software mainly belongs to company users, it is recommended to use it together with Windows User Name
hardware lock.

Advice: since there are a lot of hardware/software things to generate the hardware ID, it may be difficult to select
the best configuration. Our recommendation is to initially use only Hard Disk Serial Number hardware lock. Hard Disk
Serial Number remains the same after formatting and reinstalling the operation system, it can't be the same on
multiple computers and has a small percentage of failures.

Allow Changes - specifies the number of selected hardware changes. This feature will keep the registration key valid,
until the selected hardware is changed the selected number of times. Why can hardware ID be changed? This could
happen due to execution permissions (for example, if a motherboard lock is enabled, and the program runs under
the administrator for the first time, and without any administrator privileges for the second one, it causes hardware
ID change) or due to hardware update (such as changes of the Hard Disk, motherboard, etc) or due to user
changes (a computer name or system volume name). We recommend you to set the number of changes to at least
1 for each selected hardware.

Encrypt with Hardware ID

This feature allows you to encrypt the file with the particular hardware ID. The purpose of this feature is to limit the
file usage to only one particular PC, moreover, it will be really impossible to run/unpack/crack the file if the hardware
ID (which the file is encrypted with) is unknown. It will be possible to run the protected file ONLY on the PC that has
the same hardware ID as the one it was encrypted with.

To apply this feature, it is very helpful to use some kind of an activator program. Run on the user's PC, this program
will generate and show the Hardware ID. Then this ID should be sent to the developer who protects personal,
hardware encrypted copy of your application.

If there is any attempt to run the file on the PC with a different Hardware ID, the execution will depend on the
properties set in the CHECK-UP - Control Sum panel, i.e. if the control sum check-up is enabled, the Control Sum
message will be shown. If it is disabled, the application will be terminated silently.

Registration Dialog

The current feature allows you to add a custom registration dialog to the executable even without modifying or
recompiling the main module. Note that this Registration Dialog can also be called by means of the Enigma API
function EP_RegShowDialog.

Use custom registration dialog - enables the registration dialog to be shown.

Show if the trial has expired - show the registration dialog only if the trial period of the protected module has
expired.

Show if unregistered - show the registration dialog if the application is unregistered.

Show message if key is valid - show a message if the user has succeeded with the registration and entered the
correct registration information. Use the "Design Message" button to specify message texts.

Show message if key is invalid - show a message if the user has not succeeded with the registration and entered
incorrect registration information. Use the "Design Message" button to specify message texts.

Design - press this button to design a custom registration dialog. Follow the link to learn more about Registration
Dialog Designer.

Align Property

Determines how the control aligns within its container (parent control).

Description

Use Align to align a control to the top, bottom, left, or right of a form or panel and have it remain there even if the
size of the form, panel, or component that contains the control changes. When the parent is resized, an aligned
control also resizes so that it continues to span the top, bottom, left, or right edge of the parent.

For example, to use a panel component with various controls on it as a tool palette, change the panel’s Align value
to alLeft. The value of alLeft for the Align property of the panel guarantees that the tool palette remains on the left
side of the form and always equals the client height of the form.

The default value of Align is alNone, which means a control remains where it is positioned on a form or panel.

Tip: If Align is set to alClient, the control fills the entire client area so that it is impossible to select the parent form
by clicking on it. In this case, select the parent by selecting the control on the form and pressing Esc, or by using
the Object Inspector.

Any number of child components within a single parent can have the same Align value, in which case they stack up
along the edge of the parent. To adjust the order in which the controls stack up, drag the controls into their desired
positions.

Note: To cause a control to maintain a specified relationship with an edge of its parent, but not necessarily lie along
one edge of the parent, use the Anchors property instead.

Value Meaning

alNone The control remains where it was placed. This is the default value

alTop The control moves to the top of its parent and resizes to fill the width of its parent. The height of the control is not
affected

alBottom The control moves to the bottom of its parent and resizes to fill the width of its parent. The height of the control is
not affected

alLeft The control moves to the left side of its parent and resizes to fill the height of its parent. The width of the control
is not affected

alRight The control moves to the right side of its parent and resizes to fill the height of its parent. The width of the control
is not affected

alClient The control resizes to fill the client area of its parent. If another control already occupies part of the client area,
the control resizes to fit within the remaining client area

alCustom The control’s positioning is determined by calls to its parent's CustomAlignInsertBefore and CustomAlignPosition
methods

Alignment Property

Controls the horizontal placement of the text within the label.

Description

Set Alignment to specify how the text of the label is justified within the ClientRect of the label control.

The effect of the Alignment property is more obvious if the WordWrap property is true and the label includes more
than one line of text.

AlphaBlend Property

Specifies whether the form is translucent.

Description

Set AlphaBlend to specify that the form represents a layered window that allows a translucent color. The
AlphaBlendValue property specifies the degree of translucency.

AlphaBlendValue Property

Specifies the degree of translucency on a translucent form.

Description

Set AlphaBlendValue to a value between 0 and 255 to indicate the degree of translucency when the AlphaBlend
property is true. A value of 0 indicates a completely transparent window. A value of 255 indicates complete opacity.

Note: AlphaBlendValue only has an effect when the AlphaBlend property is true.

Anchors Property

Specifies how the control is anchored to its parent.

Description

Use Anchors to ensure that a control maintains its current position relative to an edge of its parent, even if the
parent is resized. When its parent is resized, the control holds its position relative to the edges to which it is
anchored.

If a control is anchored to opposite edges of its parent, the control stretches when its parent is resized. For
example, if a control has its Anchors property set to [akLeft, akRight], the control stretches when the width of its
parent changes.

Anchors is enforced only when the parent is resized. Thus, for example, if a control is anchored to opposite edges of
a form at design time and the form is created in a maximized state, the control is not stretched because the form is
not resized after the control is created.

Note: If a control should maintain contact with three edges of its parent (hugging one side of the parent and
stretching the length of that side), use the Align property instead. Unlike Anchors, Align allows controls to adjust to
changes in the size of other aligned sibling controls as well as changes to the parent’s size.

Value Meaning

akTop The control’s position is fixed with respect to the top edge of its parent

akLeft The control’s position is fixed with respect to the left edge of its parent

akRight The control’s position is fixed with respect to the right edge of its parent

akBottom The control’s position is fixed with respect to the bottom edge of its parent

AutoSize Property

Specifies whether the control sizes itself automatically to accommodate its contents.

Description

Use AutoSize to specify whether the control sizes itself automatically. When AutoSize is true, the control resizes
automatically when its contents change.

BevelEdges Property

Specifies which edges of the control are beveled.

Description

The BevelInner, BevelOuter, and BevelKind properties determine the appearance of the specified edges.

Value Meaning

beLeft The left edge is beveled.

beTop The top edge is beveled.

beRight The right edge is beveled.

beBottom The bottom edge is beveled.

BevelInner Property

Specifies the cut of the inner bevel.

Description

Use BevelInner to specify whether the inner bevel has a raised, lowered, or flat look.

The inner bevel appears immediately inside the outer bevel. If there is no outer bevel (BevelOuter is bvNone), the
inner bevel appears immediately inside the border.

Value Meaning

bvNone The bevel does not exist.

bvLowered The bevel appears lowered.

bvRaised The bevel appears raised.

bvSpace The bevel appears as a space if its kind is not bkTile. Otherwise, the bevel appears raised.

BevelKind Property

Specifies the control’s bevel style.

Description

Use BevelKind to modify the appearance of a bevel. BevelKind influences how sharply the bevel stands out.

BevelKind, in combination with BevelWidth and the cut of the bevel specified by BevelInner or BevelOuter, can
create a variety of effects. Experiment with various combinations to get the look you want.

Value Meaning

bkNone No bevel is added.

bkTile The bevel appears sharply defined.

bkSoft The bevel uses softer contrasts than bkTile.

bkFlat The bevel has a broad, flat appearance.

BevelOuter Property

Specifies the cut of the outer bevel.

Description

Use BevelInner to specify whether the outer bevel has a raised, lowered, or flat look.

The outer bevel appears immediately inside the border and outside the inner bevel.

Value Meaning

bvNone The bevel does not exist.

bvLowered The bevel appears lowered.

bvRaised The bevel appears raised.

bvSpace The bevel appears as a space if its kind is not bkTile. Otherwise, the bevel appears raised.

BevelWidth Property

Determines the width, in pixels, of both the inner and outer bevels of a panel.

Description

Use BevelWidth to specify how wide the inner or outer bevel should be. Do not confuse BevelWidth, which is the
width of the bevels, with BorderWidth, which is the space between the bevels.

If both the BevelInner and BevelOuter properties are bvNone, BevelWidth has no effect. To remove both bevels, set
the BevelInner and BevelOuter properties to bvNone, rather than setting the BevelWidth to 0, as this involves less
overhead when painting.

BiDiMode Property

Specifies the bi-directional mode for the control.

Description

The bi-directional mode controls the reading order for the text, the placement of the vertical scroll bar, and whether
the alignment is changed.

Value Meaning

bdLeftToRight Reading order is left to right. Alignment is not changed. The vertical scroll bar appears on the
right edge of the control.

bdRightToLeft Reading order is right to left. Alignment is changed. The vertical scroll bar appears on the left
edge of the control.

bdRightToLeftNoAlign Reading order is right to left. Alignment is not changed. The vertical scroll bar appears on the left
edge of the control.

bdRightToLeftReadingOnly Reading order is right to left. Alignment and scroll bar are not changed.

BorderIcons Property

Specifies which icons appear on the title bar of the form.

Description

May contain the following values:

Value Meaning

biSystemMenu The form has a Control menu (also known as a System menu).

biMinimize The form has a Minimize button

biMinimize The form has a Maximize button

biHelp If BorderStyle is bsDialog or biMinimize and biMaximize are excluded, a question mark appears in the form's
title bar and when clicked, the cursor changes to crHelp; otherwise, no question mark appears.

BorderStyle Property

Determines whether the edit control has a single line border around the client area.

Description

Use BorderStyle to affect the sharpness with which the client area of the edit control stands out. BorderStyle can
have a value of either bsSingle or bsNone. If BorderStyle is bsSingle, the edit control has a single-line border
around the client area. If BorderStyle is bsNone, there will be no border.

Value Meaning

bsNone No visible border.

bsSingle Single-line border.

BorderWidth Property

Specifies the distance, in pixels, between the outer and inner bevels.

Description

Use BorderWidth to specify how wide the border around the panel should be. A value of 0 (zero) means no border
should appear.

Brush Property

Specifies the color and pattern used for filling the shape control.

Cancel Property

Determines whether the button’s OnClick event handler executes when the Escape key is pressed.

Description

If Cancel is true, the button’s OnClick event handler executes when the user presses Esc. Although an application
can have more than one Cancel button, the form calls the OnClick event handler only for the first visible button in
the tab order.

Caption Property

Specifies a text string that identifies the control to the user.

Description

Use Caption to specify the text string that labels the control.

To underline a character in a Caption that labels a component, include an ampersand (&) before the character. This
type of character is called an accelerator character. The user can then select the component by pressing Alt while
typing the underlined character. To display an ampersand character in the caption, use two ampersands (&&).

Note: Controls that display text use either the Caption property or the Text property to specify the text value.
Which property is used depends on the type of control. In general, Caption is used for text that appears as a
window title or label, while Text is used for text that appears as the content of a control.

Center Property

Indicates whether the image is centered in the image control.

Description

When the image does not fit perfectly within the image control, use Center to specify how the image is positioned.
When Center is true, the image is centered in the control. When Center is false, the upper left corner of the image
is positioned at the upper left corner of the control.

CharCase Property

Determines the case of the text within the edit control.

Description

Value Meaning

ecLowerCase The text is converted to lowercase.

ecNormal The text appears in mixed case. It is not forced into any case.

ecUpperCase The text is converted to uppercase.

ClickAction Property

Determines the OnClick event handler.

Description

ClickAction may have following values.

Value Action

caRegister Perform register. This way the application reads name and key value from edit controls and tries to register.

caContinue Continue execution

caExit Exit application

caNone Nothing to do

ClientHeight Property

Specifies the height (in pixels) of the form’s client area.

Description

Use ClientHeight to determine the height (in pixels) of the form’s client area. The client area is the usable area
inside the form's border, excluding the title bar, scroll bars, and so on.

Set ClientHeight to change the height of the form’s window based on the desired client area. To change the height
of the form’s window based on the total size of the window (including the border, menu, status bar and so on), use
the Height property instead.

ClientWidth Property

Specifies the width (in pixels) of the form’s client area.

Description

Use ClientWidth to determine the width (in pixels) of the form’s client area. The client area is the usable area inside
the form's border. Set ClientWidth to change the width of the form’s window based on the desired client area. To
change the width of the form’s window based on the total size of the window (including the border, status bar and
so on), use the Width property instead.

CloseAction Property

Determines the OnClose event handler.

Description

CloseAction may have following values.

Value Action

caRegister Perform register. This way the application reads name and key value from edit controls and tries to register.

caContinue Continue execution

caExit Exit application

caNone Nothing to do

Color Property

Specifies the background color of the control.

Description

Use Color to read or change the background color of the control.

Constraints Property

Specifies the size constraints for the control.

Description

Use Constraints to specify the minimum and maximum width and height of the control. When Constraints contains
maximum or minimum values, the control cannot be resized to violate those constraints.

Warning: Do not set up constraints that conflict with the value of the Align or Anchors property. When these
properties conflict, the response of the control to resize attempts is not well-defined.

Content Property

Determines the content of the edit control. This information is used when the registration information is verifying
and the current hardware id should be shown.

Description

Content may have following values.

Value Action

coRegistratioName The edit will contain a registaration name. Users will have to enter registration name into this control.

coRegistratioKey The edit will contain a registration key. Users will have to enter registration key into this control.

coHardwareID This edit will be filled out with the Hardware ID.

coCustom The edit contains custom text.

Ctl3D Property

Determines whether a control has a three-dimensional (3-D) or two-dimensional look.

Cursor Property

Specifies the image used to represent the mouse pointer when it passes into the region covered by the control.

Description

Change the value of Cursor to provide feedback to the user when the mouse pointer enters the control.

Cursor Image

crDefault Whatever cursor is the default for the window class (usually crArrow)

crNone

crArrow

crCross

crIBeam

crSizeNESW

crSizeNS

crSizeNWSE

crSizeWE

crUpArrow

crHourGlass

crDrag

crNoDrop

crHSplit

crVSplit

crMultiDrag

crSQLWait

crNo

crAppStart

crHelp

crHandPoint

crSize

crSizeAll

Default Property

Determines whether the button’s OnClick event handler executes when the Enter key is pressed.

Description

If Default is true, the button’s OnClick event handler executes when the user presses Enter.

Although an application can have more than one Default button, the form calls the OnClick event handler only for
the first visible button in the tab order. Moreover, any button that has focus becomes the Default button
temporarily; hence, if the user selects another button before pressing Enter, the selected button’s OnClick event
handler executes instead.

Enabled Property

Controls whether the control responds to mouse and keyboard.

Description

Use Enabled to change the availability of the control to the user. To disable a control, set Enabled to false. Disabled
controls appear dimmed. If Enabled is false, the control ignores mouse and keyboard.

Flat Property

Determines whether the button has a 3D border that provides a raised or lowered look.

Description

Set Flat to true to remove the raised border when the button is unselected and the lowered border when the
button is clicked or selected. When Flat is true, use separate bitmaps for the different button states to provide
visual feedback to the user about the button state.

Font Property

Controls the attributes of text written on or in the control.

FontHovered Property

Controls the attributes of text of the TLink when the mouse pointer is moving over the control.

FormStyle Property

Determines the form’s style.

Description

FormStyle consists of the following values.

Value Meaning

fsNormal The form is neither an MDI parent window nor an MDI child window.

fsMDIChild The form is an MDI child window.

fsMDIForm The form is an MDI parent window.

fsStayOnTop
This form remains on top of the desktop and of other forms in the project, except any others that also have

FormStyle set to fsStayOnTop. If one fsStayOnTop form launches another, neither form will consistently remain
on top.

Glyph Property

Specifies the bitmap that appears on the speed button.

Description

Set Glyph to a bitmap object that contains the image that should appear on the face of the button. Bring up the
Open dialog box from the Object Inspector to choose a bitmap file (with a .BMP extension).

Glyph can provide up to four images within a single bitmap. All images must be the same size and next to each
other in a horizontal row. TSpeedButton displays one of these images depending on the state of the button.

If only one image is present, TSpeedButton attempts to represent the other states by altering the image slightly for
each state, although the Down state is always the same as the Up state.

If the bitmap contains multiple images, specify the number of images in the bitmap with the NumGlyphs property.

Note: The lower left pixel of the bitmap is reserved for the “transparent” color. Any pixel in the bitmap that matches
the lower left pixel will be transparent.

Image
position

Button
state Description

First Up This image appears when the button is unselected. If no other images exist in the bitmap, this
image is used for all states.

Second Disabled This image usually appears dimmed to indicate that the button can't be selected.

Third Clicked This image appears when the button is clicked. If GroupIndex is 0, the Up image reappears
when the user releases the mouse button.

Fourth Down This image appears when the button stays down indicating that it remains selected.

Height Property

Specifies the vertical size of the control in pixels.

Hint Property

Contains the text string that can appear when the user moves the mouse over the control.

Description

Use the Hint property to provide a string of help text either as a Help Hint, or as help text on a particular location
such as a status bar.

A Help Hint is a box containing help text that appears for a control when the user moves the mouse pointer over
the control and pauses momentarily. To set up Help Hints:

- Specify the Hint property of each control for which a Help Hint should appear
- Set the ShowHint property of each appropriate control to true and set the ShowHint property of the form to true.

Note: If the application's ShowHint property is false, the Help Hint does not appear.

HorzScrollBar Property

Represents the horizontal scroll bar for the scrolling windowed control.

Layout Property

Specifies the vertical placement of the text within the label.

Description

Set Layout to specify how the text of the label is placed within the ClientRect of the label control. Layout is the
vertical analog to the Alignment property.

Left Property

Specifies the horizontal coordinate of the left edge of a component relative to its parent.

Lines Property

Contains the individual lines of text in the memo control.

Description

Use Lines to manipulate text in an memo control on a line-by-line basis.

Margin Property

Specifies the number of pixels between the edge of the button and the image or caption drawn on its surface.

Description

Use Margin to specify the indentation of the image specified by the Glyph property or the text specified by the
Caption property. The edges that Margin separates depends on the Layout property. If Layout is blGlyphLeft, the
margin appears between the left edge of the image or caption and the left edge of the button. If Layout is
blGlyphRight, the margin separates the right edges. If Layout is blGlyphTop, the margin separates the top edges,
and if Layout is blGlyphBottom, the margin separates the bottom edges.

If Margin is –1, the image or text is centered on the button.

MaxLength Property

Specifies the maximum number of characters the user can enter into the edit control.

Description

Use MaxLength to limit the number of characters that can be entered into the edit control. A value of -1 indicates
that there is no application-defined limit on the length.

Use MaxLength to limit the length of the text in an edit control if that text will be copied into a fixed-length buffer.

Note: Setting MaxLength to a value less than the number of characters currently in the edit control causes the edit
control to truncate its text to MaxLength characters.

Name Property

Specifies the name of the control.

Description

Use the Name property to assign a new name to the control or to find out what the name of the control is. Property
is informative, it does not affect on workability.

NumGlyphs Property

Specifies the number of images included in the Glyph property.

Description

Set NumGlyphs to the number of images provided by the bitmap assigned to the Glyph property. All images must be
the same size and next to each other in a row. The Glyph property can provide up to four images.

PasswordChar Property

Indicates the character, if any, to display in place of the actual characters typed in the control.

Description

Use the PasswordChar property to create an edit control that displays a special character in place of any entered
text. If PasswordChar is set to the null character (ANSI character zero), the edit control displays its text normally. If
PasswordChar is any other character, the edit control displays PasswordChar in place of each character typed.
PasswordChar affects the appearance of the edit control only. The value of the Text property reflects the actual
characters that are typed.

Pen Property

Specifies the pen used to outline the shape control.

Picture Property

Specifies the image that appears on the image control.

Position Property

Represents the size and placement of the form.

Proportional Property

Indicates whether the image should be changed, without distortion, so that it fits the bounds of the image control.

Description

Set Proportional to true to ensure that the image can be fully displayed in the image control without any distortion
such as occurs with the Stretch property. When Proportional is true, images that are too large to fit in the image
control are scaled down (while maintaining the same aspect ratio) until they fit in the image control. Images that
are too small are displayed normally. That is, Proportional can reduce the magnification of the image, but does not
increase it.

When the image control resizes, the image resizes also.

To resize the image so that it fits exactly in the image control, even if that causes distortion, use the Stretch
property instead.

To resize the control to the image rather than resizing the image to the control, use the AutoSize property instead.

The default value for Proportional is false.

Note: Proportional has no effect if the Picture property contains an icon.

ReadOnly Property

Determines whether the user can change the text of the edit control.

Description

To restrict the edit control to display only, set the ReadOnly property to true. Set ReadOnly to false to allow the
contents of the edit control to be edited.

ScrollBars Property

Determines whether the control has scroll bars.

Description

ScrollBars can take one of the following values:

Value Meaning

ssNone The control has no scroll bars.

ssHorizontal The control has a single scroll bar on the bottom edge.

ssVertical The control has a single scroll bar on the right edge.

ssBoth Horizontal scrollbar that appears as-needed.

Shape Property

Determines the shape of the bevel.

Description

Set Shape to specify whether the bevel appears as a line, box, frame, or space. For shapes that can appear either
raised or lowered, the Style property indicates which effect is used.

The default value for Shape is bsBox.

Value Meaning

bsBox The entire client area appears raised or lowered.

bsFrame The client area is outlined by a raised or lowered frame.

bsTopLine The bevel displays a line at the top of the client area.

bsBottomLine The bevel displays a line at the bottom of the client area.

bsLeftLine The bevel displays a line at the left side of the client area.

bsRightLine The bevel displays a line at the right side of the client area.

bsSpacer The bevel is an empty space.

ShowCopyButton Property

Allows to show a Copy to Clipboard button near with the edit control and associated with it.

Description

This property could be, for example, used to copy shown Hardware ID from control to clipboard.

ShowHint Property

Determines whether the control displays a Help Hint when the mouse pointer rests momentarily on the control.

Description

The Help Hint is the value of the Hint property, which is displayed in a box just beneath the control. Use ShowHint
to determine whether a Help Hint appears for the control.

To enable Help Hint for a particular control, the application ShowHint property must be true.

ShowPasteButton Property

Allows to show a Paste from Clipboard button near with the edit control and associated with it.

Description

This property could be, for example, used to paste registration name or key to the control from clipboard.

Spacing Property

Determines where the image and text appear on a speed button.

Description

Set Spacing to the number of pixels that should appear between the image specified in the Glyph property and the
text specified in the Caption property.

If Spacing is a positive number, its value is the number of pixels between the image and text. If Spacing is 0, the
image and text appear flush with each other. If Spacing is -1, the text appears centered between the image and
the button edge.

Stretch Property

Indicates whether the image should be changed so that it exactly fits the bounds of the image control.

Description

Set Stretch to true to cause the image to assume the size and shape of the image control. When the image control
resizes, the image resizes also. Stretch resizes the height and width of the image independently. Thus, unlike a
simple change in magnification, Stretch can distort the image if the image control is not the same shape as the
image.

To resize the control to the image rather than resizing the image to the control, use the AutoSize property instead.

Style Property

Determines whether the bevel appears raised or lowered.

Description

Set Style to indicate whether the bevel should create a raised or a lowered effect. When the Shape property is
bsBox, the entire client area appears raised or lowered. For all other values of Shape, the bevel displays a raised or
lowered line along the edge or edges of the client area. The default value of Style is bsLowered.

Value Meaning

bsLowered The bevel is lowered.

bsRaised The bevel is raised.

TabOrder Property

Indicates the position of the control in its parent's tab order.

Description

TabOrder is the order in which child windows are visited when the user presses the Tab key. The control with the
TabOrder value of 0 is the control that has the focus when the form first appears.

Initially, the tab order is always the order in which the controls were added to the form. The first control added to
the form has a TabOrder value of 0, the second is 1, the third is 2, and so on. Change this by changing the
TabOrder property.

Each control has a unique tab-order value within its parent. If you change the TabOrder property value of one
control to be the same as the value of a second control, the TabOrder value for all the other controls changes. For
example, suppose a control is sixth in the tab order. If you change the control's TabOrder property value to 3
(making the control fourth in the tab order), the control that was originally fourth in the tab order now becomes
fifth, and the control that was fifth becomes sixth.

Assigning TabOrder a value greater than the number of controls contained in the parent control moves the control
to the end of the tab order. The control does not take on the assigned value of TabOrder, but instead is given the
number that assures the control is the last in the tab order.

Note: TabOrder is meaningful only if the TabStop property is true and if the control has a parent. (The TabOrder
property of a form is not used unless the form is the child of another form.) A control with a TabOrder of -1 has no
parent, and therefore cannot be reached by pressing the Tab key. To remove a parented control from the Tab
order, set its TabStop property to false.

TabStop Property

Determines if the user can tab to a control.

Description

Use the TabStop to allow or disallow access to the control using the Tab key.

If TabStop is true, the control is in the tab order. If TabStop is false, the control is not in the tab order and the user
can't press the Tab key to move to the control.

Note: TabStop is not meaningful for a form unless the form assigns another form to be its parent.

Top Property

Specifies the Y coordinate of the top left corner of a control, relative to its parent or containing control in pixels.

Transparent Property

Specifies whether the background of the control obscures objects below the control object.

Description

Set Transparent to true to allow objects behind the control object to show through the background of the control.
Set Transparent to false to make the background of the control opaque.

TransparentColor Property

Specifies whether a color on the form appears transparent.

Description

Use TransparentColor to indicate that one of the colors on the form should be treated as transparent, allowing
windows behind the form to completely show through. The TransparentColorValue property indicates the color that
appears completely transparent.

Note: To make the entire form transparent, or to make it translucent rather than transparent, use the AlphaBlend
and AlphaBlendValue properties.

TransparentColorValue Property

Indicates the color on the form that appears transparent when TransparentColor is true.

Description

Use TransparentColorValue to indicate the color that appears transparent when the TransparentColor property is
true.

Url Property

Specifies the Url that will be opened on OnClick action.

Description

Url property can open not only the browser window but also a default email client and some other files. For
example:

url http://enigmaprotector.com/ opens a browser window with the current address,

url mailto:support@enigmaprotector.com opens a default email client with the offer to create email for
support@enigmaprotector.com

url License.txt opens a Windows notepad with the License.txt file.

VertScrollBar Property

Represents the vertical scroll bar for the scrolling windowed control.

Visible Property

Determines whether the component appears onscreen.

WantReturns Property

Determines whether the user can insert return characters into the text.

Description

Set WantReturns to true to allow users to enter return characters into the text. Set WantReturns to false to allow
the form to handle return characters instead.

For example, in a form with a default button (such as an OK button) and a memo control, if WantReturns is false,
pressing Enter chooses the default button. If WantReturns is true, pressing Enter inserts a return character in the
text.

Note: If WantReturns is false, users can still enter return characters into the text by pressing Ctrl+Enter.

Width Property

Specifies the horizontal size of the control or form in pixels.

WindowState Property

Represents how the form appears on the screen.

Description

WindowState describes the state of a form window. The following table lists the possible values:

Value Meaning

wsNormal The form is in its normal state (that is, neither minimized nor maximized).

wsMinimized The form is minimized.

wsMaximized The form is maximized.

WordWrap Property

Specifies whether the button text wraps to fit the width of the control.

Description

Set WordWrap to true to allow the label to display multiple line of text. When WordWrap is true, text that is too
wide for the control wraps at the right margin.

Set WordWrap to false to limit the label to a single line. When WordWrap is false, text that is too wide for the label
appears truncated.

TBevel

Use TBevel to create beveled boxes, frames, or lines. The bevel can be raised or lowered.

Properties

l Align
l Anchors
l Constraints
l Cursor
l Height
l Hint
l Left
l Name
l Shape
l ShowHint
l Style
l Top
l Visible
l Width

TButton

Use TButton to put a standard push button on the form. TButton may process such user actions like register, close
application and continue execution.

Properties

l Anchors
l BiDiMode
l Cancel
l Caption
l ClickAction
l Constraints
l Cursor
l Default
l Enabled
l Font
l Height
l Hint
l Left
l Name
l ShowHint
l TabOrder
l TabStop
l Top
l Visible
l Width
l WordWrap

TEdit

Use a TEdit object to put standard Windows edit control on the form. Edit controls are used to retrieve text that
users type. The edit controls can also display the text to the user. TEdit may contain Hardware ID string or custom
string, allows to enter registration name and key.

Properties

l Align
l Anchors
l BevelEdges
l BevelInner
l BevelKind
l BevelOuter
l BevelWidth
l BiDiMode
l BorderStyle
l CharCase
l Color
l Constraints
l Content
l Ctl3D
l Cursor
l Enabled
l Font
l Height
l Hint
l Left
l MaxLength
l Name
l PasswordChar
l ReadOnly
l ShowCopyButton
l ShowHint
l ShowPasteButton
l TabOrder
l TabStop
l Top
l Visible
l Width

TForm

TForm represents the main registration window.

Properties

l AlphaBlend
l AlphaBlendValue
l BiDiMode
l BorderIcons
l BorderStyle
l BorderWidth
l Caption
l ClickAction
l ClientHeight
l ClientWidth
l CloseAction
l Color
l Constraints
l Ctl3D
l Cursor
l Enabled
l Font
l FormStyle
l Height
l Hint
l HorzScrollBar
l Left
l Name
l Position
l ShowHint
l Top
l TransparentColor
l TransparentColorValue
l VertScrollBar
l Width
l WindowState

TGroupBox

The TGroupBox component represents standard Windows group box, used to group related controls in the form.

Properties

l Align
l Anchors
l BiDiMode
l Caption
l Color
l Constraints
l Ctl3D
l Cursor
l Enabled
l Font
l Height
l Hint
l Left
l Name
l ShowHint
l TabOrder
l TabStop
l Top
l Visible
l Width

TImage

Use TImage to display a graphical image on the form.

Properties

l Align
l Anchors
l AutoSize
l Center
l Constraints
l Cursor
l Enabled
l Height
l Hint
l Left
l Name
l Picture
l Proportional
l ShowHint
l Stretch
l Top
l Transparent
l Visible
l Width

TLabel

Use TLabel to add text that the user can’t edit in the form.

Properties

l Align
l Alignment
l Anchors
l AutoSize
l BiDiMode
l Caption
l Color
l Constraints
l Cursor
l Enabled
l Font
l Height
l Hint
l Layout
l Left
l Name
l ShowHint
l Top
l Transparent
l Visible
l Width
l WordWrap

TLink

Use TLink for a hyperlink to the form that will be able to open an url in the browser, open default email client, open
some external file.

Properties

l Align
l Alignment
l Anchors
l AutoSize
l BiDiMode
l Caption
l Color
l Constraints
l Cursor
l Enabled
l Font
l FontHovered
l Height
l Hint
l Layout
l Left
l Name
l ShowHint
l Top
l Transparent
l Url
l Visible
l Width
l WordWrap

TMemo

Use TMemo to put a standard Windows multiline edit control on the form. Multiline edit boxes allow the user to
enter more than one line of text. They are appropriate for representing lengthy information. Memo may contain
Hardware ID string or custom string, allows to enter registration name and key.

Properties

l Align
l Alignment
l Anchors
l BevelEdges
l BevelInner
l BevelKind
l BevelOuter
l BiDiMode
l BorderStyle
l Color
l Constraints
l Content
l Ctl3D
l Cursor
l Enabled
l Font
l Height
l Hint
l Left
l Lines
l MaxLength
l Name
l ReadOnly
l ScrollBars
l ShowCopyButton
l ShowHint
l ShowPasteButton
l TabOrder
l TabStop
l Top
l Visible
l WantReturns
l Width
l WordWrap

TPanel

Use TPanel to put an empty panel on the form.

Properties

l Align
l Alignment
l Anchors
l BevelEdges
l BevelInner
l BevelKind
l BevelOuter
l BevelWidth
l BiDiMode
l BorderStyle
l BorderWidth
l Caption
l Color
l Constraints
l Ctl3D
l Cursor
l Enabled
l Font
l Height
l Hint
l Left
l Name
l ShowHint
l TabOrder
l TabStop
l Top
l Visible
l Width

TShape

Add a TShape object to the form to draw a simple geometric shape on the form.

Properties

l Align
l Anchors
l Brush
l Constraints
l Cursor
l Enabled
l Height
l Hint
l Left
l Name
l Pen
l Shape
l ShowHint
l Top
l Visible
l Width

TSpeedButton

TSpeedButton is almost same TButton control but allows to add an image onto the button.

Properties

l Anchors
l BiDiMode
l Caption
l ClickAction
l Constraints
l Cursor
l Enabled
l Flat
l Font
l Glyph
l Height
l Hint
l Layout
l Left
l Margin
l Name
l NumGlyphs
l ShowHint
l Spacing
l Top
l Visible
l Width

Registration Dialog Designer

The Registration Dialog Designer allows you to design a custom registration dialog, to apply your own styles and window controls
configuration. Here you can put your own controls in the form and define registration events. The registration dialog designer contains 3
forms:

Components Palette

Contains a set of available components that you can put in the registration form. The main menu of the form allows you to show Object
Inspector and Designed Form. The description of the components' properties can be seen below. To place a component on the registration
form, click the necessary component on the Component Palette and then click on the Registration Form to put the component in the
necessary position.

There are the following controls available:

l TForm - the registration form itself;

l TEdit control allows you to enter the registration name and key, shows the hardware ID or contains any user text;

l TLabel control allows you to show any text;

l TGroupBox control allows you to group several controls in the form and also may contain a header text;

l TMemo control is very similar to TEdit control, but may have multiple lines of the text;

l TButton is a push button control that allows managing user actions such as registering, closing the application or continuing the
execution;

l TSpeedButton control is very similar to TButton, but may also contain an image;

l TLink control allows you to open a browser window, a default email client, some text file in the external window or
open/execute any other file;

l TImage control allows you to draw a simple geometric shape in the form;

l TShape control allows you to place an image in the form;

l TBevel control allows you to create beveled boxes, frames, or lines;

l TPanel control allows you to put an empty panel in the form. Panels have features for providing a beveled border around the
control, as well as methods to help manage the placement of child controls embedded in the panel;

File menu

l Load from File - allows you to load the registration form from an external file;
l Save to File - allows you to save the current registration form to an external file;
l Exit - exit the designer;

Edit menu

l Cut - cut selected control(s) from clipboard;
l Copy - copy selected control(s) to clipboard;
l Paste - paste copied/cut control(s) from clipboard to the form;
l Delete - delete selected control(s) from the form;
l Select All - select all control(s) on the form;
l Bring to Front - bring selected control(s) to the front;
l Send to Back - send selected control(s) to the back;
l Align to Grid - align selected control(s) to the grid;

View menu

l Object Inspector - shows Object Inspector;
l Designed Form - shows the designed registration form;

Registration Form

It is a form that will be shown to the users for them to enter registration information. Click on the necessary component that is placed on this
form and its properties will be shown in the Object Inspector. To delete the component from the form, right-click the component and select
Delete item in the appeared pop-up menu, or press the Del key (Note: the registration form cannot be deleted).

Right-clicking shows the registration form pop-up menu.

l Cut - cut selected control(s) from clipboard;
l Copy - copy selected control(s) to clipboard;
l Paste - paste copied/cut control(s) from clipboard to the form;
l Delete - delete selected control(s) from the form;
l Select All - select all control(s) on the form;
l Bring to Front - bring selected control(s) to the front;
l Send to Back - send selected control(s) to the back;
l Align to Grid - align selected control(s) to the grid;

Object Inspector

Selected the component properties are shown here. Navigate to the necessary control description to learn more about its properties.

l Click here to view TForm properties;

l Click here to view TEdit properties;

l Click here to view TLabel properties;

l Click here to view TMemo properties;

l Click here to view TGroupBox properties;

l Click here to view TButton properties;

l Click here to view TSpeedButton properties;

l Click here to view TLink properties;

l Click here to view TImage properties;

l Click here to view TShape properties;

l Click here to view TBevel properties;

l Click here to view TPanel properties;

Key Expiration Reminder

Allows you to notify the user that the registration will soon expire. The feature works only if the registration key has
an expiration date.

Show Registration Key Reminder - enables the key expiration reminder message to be shown.

Start to show reminder (days before expiration) - specify the number of days before the key expiration when the user
should get a reminder message. Click the "Design Message" button to design a reminder message, see Message
Designer for more information.

Check-Up

The functions of this topic allow adding a set of checkups like the checkup of file content changing, memory
patching, etc.

Follow the links below to get more details.

l Anti Debugger
l Control Sum
l Startup Password
l File Name
l Disk Drive
l Executed Copies
l User Language
l External Files
l Executed Processes
l Loaded Drivers
l Installed Services
l Windows Version
l Virtualization Tools
l Privileges

Anti Debugger

Use anti-debugger check-up - checks the debugger presence. A debugger is any tool which provides reversing of
sources during the application work. The examples of debuggers are SoftIce, OllyDbg, TWD etc.

If a debugger is found while the module is running, the execution process will be terminated.

Show Message before termination - if this option is enabled a reminder message will be shown in case a debugger is
found. To edit the content of the message, press "Design Message". In case the option is disabled, the execution of
the module will be terminated without notification.

Control Sum

Use control sum check-up - serves for tracking module source codes changes. Module source codes changes refer to
the changes of the file content, memory changes during the module start and work. The reasons of source codes
changes can be cracks or viruses.

In case any modifications of the module file or the module memory are detected during the module start, the
execution process will be terminated.

Run-time integrity checking - enables the technique of monitoring the memory source code modifications during the
module work. Most executables have parts of the codes located in the memory with read only access
characteristics, the current technique continuously watches the read-only memory parts and checks these control
sums. In case any modification is detected, the process will be terminated immediately. The modifications of the
memory parts with read-only characteristics can be caused only by the influence of crackers or viruses.

Show Message before termination - enable it if you need to notify the user about the module change and module
termination. To edit the message, press "Design Message" button. In case the option is disabled, the execution of
the module will be terminated without notification.

Startup Password

Use password checkup - enables startup password checkup. If this feature is enabled, the user will get a dialog on
the file start that asks to enter a password. If the user enters the valid password, the execution will continue,
otherwise a message will be shown and termination will take place. To design the message, click Design Message
button. You can set any number of passwords and commentaries to each pass. A commentary is any string, it is
used only as a reminder and does not affect module workability.

Always ask for password - always ask for a password when the module is executed;

Ask for password only for the first time - ask for a password every execution until a valid password is typed. After
you have typed a valid password for the first time, it won't be asked anymore.

Ask in days - once a valid password is typed, the dialog will be shown again after a defined number of days.

Hide password symbols - if option is enabled, the password symbols will be hidden/replaced with "*" symbol.
Otherwise, the password will not be hidden;

Allow to change password - allows the user to change the startup password. Note that this feature works for one
password per PC only. For example, if the user uses 2 passwords on one PC and decides to change the first one, it
will be possible; if the user decides to change the second one, they will succeed as well, but the first password will
return to the original one.

To add, edit, delete the password, press the following buttons.

File Name

Use file name check-up - checks changes of the module file name. Use it to prevent changes of the module file name.

During the module start, the loader checks the module file name (which is placed in the "Original file name" field), in
case it differs from the original one the module execution will be terminated.

"Get Actual" button - read the file name from "Output-File name of resulting program module" and place in the
"Original file name" field.

Show Message before termination - enable it, if you need to notify the user that there is an error in the module file
name. To edit the message, press "Design Message" button. If this option is disabled, the execution will be
terminated without notification.

Disk Drive

Use drive disk type check-up - serves for checking the drive type on which the module is executed. The function can
be used in cases when you want to limit module execution depending on the drive type (hard disk, CD-Rom, etc).

While the module is starting, the loader is checking the drive type on which the module is placed. If the current
module type is denied by the loader, the execution will be terminated.

Selection:

l Floppy disk (removable).
l Hard Disk drive.
l Network drive.
l CD-ROM drive.
l RAM disk.

Show Message before termination - if it is enabled, the user will be notified in case the module isn't executed due to
the drive deny. To edit the message, press "Design Message" button. If this option is disabled, the execution will be
terminated without notification.

Executed Copies

Use limitation of count of executed copies - serves for limiting the number of simultaneously executed module copies.

Allow copies - choose the possible count of simultaneously executed copies of the module.

Terminate Execution - with this option enabled, the execution will be terminated if the number of simultaneously
executed copies of the protected application exceeds the defined value. This option may be very helpful for checking
the copies count manually through the EP_CheckupCopies Enigma API.

Show message if copies count is exceeded - if the count of simultaneously executed copies of the module exceeds the
value defined in the "Allow copies" field, a warning message will be shown and execution of the module will be
stopped. To edit the warning message, press "Design Message" button.

While the module is starting, the Enigma loader will be checking how many copies of the current module have
already been executed, if the module count exceeds the defined value, then execution will be stopped.

User Language

Lock execution to user language - allows you to lock execution of the protected module to a user country. Select
possible countries to execute the module. If the module is executed in a non-selected country, an alert message
will be shown (if the "Show message before termination" option is enabled) or the module will be terminated
silently;

Select all - select all items in the countries list;

Unselect all - deselect all items in the countries list;

Invert selection - invert selection of all items, i.e. deselect all selected items and vice versa.

Show Message before termination - with this option enabled, the user will be notified in case the module isn't
executed due to the user language lock. To edit the message, press "Design Message" button. If this option is
disabled, the execution will be terminated without notification.

External Files

Use checkup of external files - checking external files. During the software distribution, it is a good idea to check the
content of distributive files against changing. After adding the file into the list, define the necessary parameters to
checkup. If at least one checkup parameter differs from the defined one while the protected file is starting, it will be
terminated. Click on the files list,

column "Action" - you will see the list of available checkups for files, the common ones are:

l Delete file from the list
l File checksum - checks the full content of the file
l File Version - checks the version of the file (this option is for Win32 executable files only)
l File Size - checks the size of the file
l File Date - checks the date of the file
l File Attributes - checks attributes of the file.

column "Base Relative Path" - define a base relative path of the checkup file relatively to the main protected
module.

column "Relative Path" - define a relative path of the checkup file relatively to "Base Relative Path".

Example: you have the main protected module and you need a checkup of the file that is placed in the "Example"
subfolder relatively to the main protected module, you need to add the file to the list, choose "Base Relative Path"
to "%DEFAULT FOLDER%" then add the name of the subfolder "Example" in the "Relative Path".

Add File - press this button to add a file(s) into the list.

Show message before termination - if Enigma checks that the external file has been modified, it will show a message
and will be terminated. To edit the warning message, press "Design Message" button.

Executed Processes

Use checkup of executed processes - checking executed processes. This feature allows you to make your own list of
the "black" programs that can not be executed together with the protected module. There you may define a list of
the software that should not be executed while the protected module is working. How does it work? While the
protected file is working and starting, the Enigma loader is enumerating all the executed processes and checking if
there is any software blocked by the function. If blocked software is found, the protected module is immediately
terminated. For example, this feature allows you to get protection against OllyDbg (software debugger), SnagIt
(screen capture tool), file and registry monitors. You can define checkup parameters (click on the columns to edit):

column "Action" - you will see the list of available checkups for the processes, the common ones are:

l Delete process from the list
l File Name - checkup of the file name of the executed process
l Window Text - checkup of the name of the process window (Warning: the window text may be changed

while the application is working)

l Window Class - checkup of a window class.

column "File Name" - define a file name of the process to search.

column "Window Text" - the text of the window to search. If you want to search the window text by mask, you can
enter the text quoted with an asterisk (*) symbol. For example, entered text *OllyDbg* will search any window
which text (any part of text) contains OllyDbg word.

column "Window Class " - the class of the window to search.

Add Process - press this button to add a process(es) into the list. Note: you may add any process to the list and
then edit it as you want. The appeared window shows you all the processes with their windows that are currently
executed in your system.

Check Executed Processes every X second(s) - it enables runtime checkup of executed processes while the protected
application is working. Set up the optimal number of seconds delay between the checkups (if you have many items,
for example, greater than 50, to checkup in the list, we recommend setting number of seconds greater than 10 to
avoid high CPU loading on slow PCs). If this feature is disabled, the Enigma will check executed processes only once
upon the application startup.

Show message before termination - if the Enigma checks that there is an executed process that matches the criteria,
it will show a message and will be terminated. To edit the warning message, press "Design Message" button.

Loaded Drivers

Use checkup of loaded drivers - it checks if the drivers with the defined names are installed in the system. A lot of
reversing tools use drivers to perform some work, use this checkup to detect hack tools and avoid execution of the
protected file. This checkup works not only at the file start, but also all the time during the work of the protected
file.

To add a driver to the list, click the Add button and edit the Driver Name column. To edit the driver name, click on

the necessary row at the Driver Name column and edit the text. To delete a driver from the list, click image at the
row to delete.

Show message before termination - if Enigma detects that the external file has been modified, Enigma will show a
message and will be terminated. To edit the warning message, press "Design Message" button.

Installed Services

Use checkup of installed services - checks the installed services. Warning: the feature does NOT support Windows
95, 98 and ME and requires Administaror privileges. It allows you to make your own list of the "black" services that
could not be installed together with the protected module. You can define checkup parameters (click on the columns
to edit):

column "Action" - you will see the list of available checkups for the services, the common ones are:

l Delete service from the list
l Name - the service name
l Display Name - an expanded service name.

column "Name" - define the name of the service to search.

column "Display Name " - an expanded service name.

Add Service - press this button to add a service(s) into the list. Note: you may add any service to the list and then
edit it as you want. The appeared window shows you all the services that are currently installed in your system.

